&1L

Hardware Performance
Monitoring and Dynamic
Instrumentation

Shirley Moore
shirley@cs.utk.edu

Alliance Performance Team Workshop
Urbana, IL March 14, 2002

—% PAPI Development Team

iC

e Philip Mucci, Technical Lead
e Jack Dongarra

e Kevin London

e Daniel Terpstra

e Halhang You

Hardware Counters

 § = =

e Small set of registers that count
events, which are occurrences of
specific signals related to the
processor’s function

e Monitoring these events facilitates
correlation between the structure
of the source/object code and the
efficiency of the mapping of that
code to the underlying
architecture.

Overview of PAPI

e Performance Application Programming
Interface

e The purpose of the PAPI project is to
design, standardize and implement a
portable and efficient APl to access the
hardware performance monitor
counters found on most modern
MICroprocessors.

e Parallel Tools Consortium project
http://www.ptools.org/

A
ICEEF

e PAPI provides three interfaces to the
underlying counter hardware:

1. The low level interface manages hardware
events in user defined groups called
EventSets.

2. The high level interface simply provides the
ability to start, stop and read the counters
for a specified list of events.

3. Graphical tools to visualize information.

>

P| Implementation

Portable PAPI High Leve

Layer

Machine
Specific
Layer

& PAPI Preset Events

e Proposed standard set of events
deemed most relevant for
application performance tuning

e Defined in papiStdEventDefs.h

e Mapped to native events on a
given platform

—Run tests/avail to see list of PAPI
preset events available on a platform

_,f;; PAPI 2.1 Release

e Platforms

— Linux/x86, Windows 2000

e Requires patch to Linux kernel, driver for
Windows

— Linux/1A-64
— Sun Solaris/Ultra 2.8
— IBM AIX/Power

= Requires pmtoolkit (available from)
http://alphaworks.ibm.com/)b m 7
— SGI IRIX/MIPS = / f$
o / "'q.‘-hr

— Cray T3E/Unicos

e Fortran and C binding and MATLAB
wrappers

PAPI

i High-level Interface

e Meant for application programmers
wanting coarse-grained
measurements

e Not thread safe
e Calls the lower level API
e Allows only PAPI preset events

e Easier to use and less setup
(additional code) than low-level

= High-level API

 § = =l

e C interface e Fortran interface
PAPI_start _counters PAPIF _start counters
PAPI read counters PAPIF read counters
PAPI_stop counters PAPIF _stop_ counters
PAPI _accum_ counters PAPIF _accum_counters
PAPI _num_counters PAPIF _num_counters

PAPI_flops PAPIF_flops

i PAPI1_ flops

 § = =

e int PAPI_flops(float *real time, float
*proc_time, long long *flpins, float *mflops)
— Only two calls needed, PAPI_flops before and after
the code you want to monitor
— real_time is the wall-clocktime between the two calls

— proc_time is the “virtual” time or time the process
was actually executing between the two calls (not as
fine grained as real time but better for longer
measurements)

— flpins is the total floating point instructions executed
between the two calls

— mflops is the Mflop/s rating between the two calls

% PAPI1 High-level Example

iC

long long values[NUM_EVENTS];

unsigned int
Events[NUM_EVENTS]={PAPI_TOT INS,PAPI _TOT CYC};

/* Start the counters */
PAPI_start_counters((int*)Events,NUM_EVENTS);

/* What we are monitoring? */

do_work();

/* Stop the counters and store the results in values */
retval = PAPI_stop_counters(values,NUM_ EVENTS);

| ow-level Interface

e |[ncreased efficiency and
functionality over the high level
PAPI interface

e About 40 functions

e Obtain iInformation about the
executable and the hardware

e Thread-safe
e Fully programmable
e Callbacks on counter overflow

Low-level Functionality

Library initialization

PAPI library init, PAPI thread Init,
PAPI_ shutdown

Timing functions

PAPI get real usec,
PAPI get virt _usec
PAPl get real cyc, PAPI get virt cyc

Inquiry functions
Management functions
Simple lock

PAPI lock/PAPI unlock

—Q* Event sets

e The event set contains key information

— What low-level hardware counters to use
— Most recently read counter values

— The state of the event set (running/not
running)

— Option settings (e.g., domain, granularity,
overflow, profiling)

e Event sets can overlap if they map to the
same hardware counter set-up.

— Allows Inclusive/exclusive measurements

Event set Operations

e Event set management
PAPl _create eventset,
PAPI _add event|[s], PAPI _rem_event|[s],
PAPI _destroy eventset

e Event set control
PAPI start, PAPI stop, PAPI read,
PAPl _accum

e Event set inquiry
PAPI query event, PAPI list events,...

pr—

=

HEEFF

Simple Example

#i ncl ude "papi.h"

#defi ne NUM EVENTS 2

i nt Event s[NUM _EVENTS] ={ PAPI _FP_I NS, PAPI _TOT_CYC}, Event Set;
| ong | ong val ues[NUM EVENTS] ;

/[* Initialize the Library */

retval = PAPI library init(PAPI _VER CURRENT);

/* Allocate space for the new eventset and do setup */

retval = PAPI create eventset(&Event Set);

/* Add Fl ops and total cycles to the eventset */

retval = PAPI add events(&Event Set, Event s, NUM EVENTS) ;

/[* Start the counters */

retval = PAPI start(Event Set);

do work(); [/* What we want to nonitor*/

/*Stop counters and store results in values */
retval = PAPI stop(Event Set, val ues);

e Using PAPI with Threads

iC

e After PAPI library Init need to register
unique thread identifier function

e For Pthreads
retval=PAPI _thread_ init(pthread_self, 0);
e OpenMP
retval=PAPI_thread init(omp_get thread num, 0);

e Each thread responsible for creation,
start, stop and read of its own counters

& Using PAPI with Multiplexing

e Multiplexing allows simultaneous use
of more counters than are supported
by the hardware.

e PAPI _multiplex_init()

—should be called after PAPI library init()
to initialize multiplexing

= PAPI_set_multiplex(int *EventSet);

—Used after the eventset is created to turn
on multiplexing for that eventset

e Then use PAPI like normal

_f}) Issues with Multiplexing

e Some platforms support hardware
multiplexing, on those that don’t
PAPI implements multiplexing in
software.

e The more events you multiplex,
the more likely the representation
IS not correct.

—Q’ Native Events

e An event countable by the CPU can
be counted even if there Is no
matching preset PAPI event

e Same Iinterface as when setting up
a preset event, but a CPU-specific
bit pattern Is used instead of the
PAPI event definition

Callbacks on Counter Overflow

e PAPI provides the ability to call
user-defined handlers when a
specified event exceeds a specified
threshold.

e For systems that do not support
counter overflow at the OS level,
PAPI sets up a high resolution
Interval timer and Installs a timer
Interrupt handler.

PAP1 overflow

 § = =

e Int PAPI_overflow(int EventSet, Int
EventCode, int threshold, int flags,
PAPI overflow handler_t handler)

e Sets up an EventSet such that
when it iIs PAPIl_start()’d, it begins
to register overflows

e The EventSet may contain multiple
events, but only one may be an
overflow trigger.

i Statistical Profiling

e PAPI provides support for
execution profiling based on any
counter event.

e PAPI_ profil() creates a histogram
of overflow counts for a specified
region of the application code.

Perfometer

Application is instrumented with PAPI

— call perfometer()

— Call mark_perfometer(Color)

Application is started. At the call to
perfometer signal handler and timer are set

to collect and send the information to a Java
applet containing the graphical view.

Sections of code that are of interest can be
designated with specific colors

— Using a call to mark_perfometer(‘color’)
Real-time display or trace file

— Perfometer Display

Machme mnto
E%Perfumeter !E[E

Connection Options Help

g Connect Local @ Connect to Net @% Dismy{nect Select Metric| Show Legend &" Exit

/

hench_gen |

Frocess: hench_ogen

) HTE 10T 2, Intel Pentiurm (I &t 550.0 Mhz.

Real time 40.79 s. - 336 Mflop/s: 2050 il
Wﬁme: 40.49 &, MinMax: 10.34/32.54 L) Miflops 24.0
Resume ﬁ&p Stop Datastream Setalar Disable Am\ raph Type: | FILLEDLINE hd PA P I

\ bench gen a6
I | |
DCESS «
) I 1
3L JL o LAY
—y - B 7 s T
o RN L N S N [5' __28
M}V_T vvovos?& sovovorc{w sovovosi?_ B B b EeL iy__. % B T% o%_ep R
i ik L e | & il e iR &
= F] = B = = = =rm iy %

& Perfometer Parallel Interface

E%g Perfometer

Connection Options Help

g g Cohnect Local @ Connect to Het QA& Disconnect

Select Metric '&'} Exit

=l &3

| swim | swim | swim | swim | swim | swim | swim | swim
Process: swim

_r;ﬁaﬁhine: tnrcﬁ.cs.ufk.edu, a EICF‘I..J i:'emi.um .I'Ii n.{.K'atme.ui'}l atHSSEI:EI Mhz
Real time 112.68 s. Total FP Ins: 12,792,436,531

Process time: 27.76 s.

Resume App || Stop Datastream || et Alarm

Mflopis: 58.69
Agg Milopis 59.09

i

Graph Type: | FILLEDLINE

a

W

DEEP/PAPI (Pacific Sierra) SVERTDTANY

http://www.psrv.com/deep papi_top.htHir

o

http://www.cs.uoregon.edu/research/ paracomp/tagj_g_‘jfm’:*:

SvPablo (Dan Reed, U of lllinois) pmf‘“

http://vibes.cs.uiuc.edu/Software/SvPablo/svPablo.htm,_ /.~~~ \

Scalea (Thomas Fahringer, U. Vienna)

Vprof (Curtis Janssen, Sandia Livermore
Lab) http://aros.ca.sandia.gov/~cljanss/perf/vprof/

== — Third-party Tools
that use PAPI
e TAU (Allen Mallony, U of Oregon)
http://www.par.univie.ac.at/project/scalea/
e Cluster Tools (Al Geist, ORNL)

DynaProf (Phil Mucci, UTK)

http://www.cs.utk.edu/~mucci/dynaprof/

DynaProf

An Object Code Instrumentation System for Dynamic Profiling

Philip J. Mucci mucci@cs.utk.edu November, 2001

—’% What is DynaProf?

iC

e A portable tool to instrument a
running executable with Probes
that monitor application
performance.

e Simple command line interface.
e Open Source Software
e A work In progress...

No source core required

% DynaProf Methodology

iC

e Make collection of run-time
performance data easy by:

— Avoiding instrumentation and
recompilation

—Using the same tool with different
orobes

—Providing useful and meaningful
orobe data

—Providing different kinds of probes

— Allowing custom prcN'ﬁes“rce cmle ra"u"eu!

—Q’ Why the “Dyna’?

 § = =

e |[nstrumentation is selectively
Inserted directly into the program’s
address space.

e Why is this a better way?

—No perturbation of compiler
optimizations

— Complete language independence

— Multiple Insert/Remove
Instrumentation cycles

DynaProf Design

 § = =

e GUI, command line & script driven
user interface

e Uses GNU readline for command
line editing and command
completion.

e |[nstrumentation Is done using:

—Dyninst on Linux, Solaris and IRIX
—DPCL on AIX

DynaProf Commands

load <executable>

list [module pattern]

use <probe> [probe args]

Instr module <module> [probe args]

Instr function <module> <function> [probe
args]

stop

continue

run [args]

Info

unload

—?‘ Dynaprof Probes

iC

e papiprobe
e wallclockprobe
e perfometerprobe

DynaProf Probe Design

 § = =

e Can be written in any compiled
language

e Probes export 3 functions with a
standardized interface.

e Easy to roll your own (<lday)

e Supports separate probes for
MPI1/0OpenMP/Pthreads

Future development

e GUI development

e Additional probes
— Perfex probe
—Vprof probe

e Better support for parallel
applications

£ For More Information

=== -

e http://icl.cs.utk.edu/papi/
— Software and documentation
— Reference materials
—Papers and presentations
— Third-party tools
— Mailing lists

e http://www.ncsa.uiuc.edu/UserInfo/Resources/Software/Tools/PAP1/

—ﬂ-" Current and Future Work

e Ports — P4, Power4, McKinley,
Compag Alpha

e Accuracy and efficiency Issues

e |Infrastructure for dynamic

Instrumentation of parallel
applications (DPCL?)

e ExXperimentation with 1A-64
performance monitoring features
(e.g., event qualification, EARS)

